Nanosecond time-resolved investigations using the in situ of dynamic transmission electron microscope (DTEM)

Thomas LaGrange a,⁎, Geoffrey H. Campbell a, B.W. Reed a, Mitra Taheri a, J. Bradley Pesavento a, Judy S. Kim a,b, Nigel D. Browning a,b

a Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
b Department of Chemical Engineering and Materials Science, University of California, One Shields Avenue, Davis, CA 95616, USA

1. Introduction

There have been many advances in the past decade to improve the spatial resolution of transmission electron microscopes (TEMs) [1,2]. However, there have been limited efforts to improve the temporal resolution of the in situ transmission electron microscopy beyond nominal video acquisition rates. Many processes in chemistry, biology and materials science proceed at rates much faster than 33 ms frame speed of standard video [3,4]. In order to capture the transient events of these processes, the temporal resolution must be extended beyond this video rate limitation. The temporal resolution can be improved by controlling the electron emission, such that it is correlated in time with the transient process being studied, similar to the approach taken in ultrafast electron diffraction and X-ray pump-probe techniques [5–8].

In the pump-probe approach, a transient state is first driven in the material, for example, by an initiating laser pulse, and then examined by a later analytical pulse of electrons at a correlated time with the initiating pulse. To study irreversible processes, the analytical pulse must contain a sufficient number of electrons to acquire a snapshot of the transient events in that process (single-shot approach [9]). Alternatively, if the process is reversible, an image or diffraction pattern can be formed by the integration of multiple pump and probe cycles (stroboscopic approach). The caveats to the single-shot approach are that it requires a high-brightness source (>10^9 Acm^-2 steradian^-1) and that electron–electron interactions in high-current electron pulses will limit spatial resolution. In addition, modern TEMs are not designed for high-current operation necessary for the single-shot technique, and thus, the instrument must be modified and optimized to accommodate high-current-pulsed electron probes, making it a much more technically challenging approach. Yet despite its difficulties, the single-shot approach is worth pursuing because it dramatically widens the range of phenomena that may be studied, since most processes of interest in materials science are irreversible. An ongoing effort at Lawrence Livermore National Laboratory (LLNL) has focused on the single-shot approach, developing a dynamic transmission electron microscope (DTEM) with this capability [4,9–11].

In this article, we discuss the design and construction of the DTEM for single-shot operation. In its current state, the DTEM achieves a spatial resolution better than 10 nm using 15 ns electron pulses. The spatial resolution, at present, is dose limited due to the poor coupling between the gun and condenser lens system and the limited brightness of the source. Recent improvements to the electron optics will be discussed that have both increased current and preserved electron source brightness.
followed by a description of near-term improvements to the laser systems and electron optics that will enable the acquisition of multi-frame movies. The latter part of this paper will discuss how we have used the current capabilities of the DTEM to study the transient phase evolution of solid state reactions that occur in NiAl reactive multilayer films, the martensitic nucleation behavior and a to b transformation rates in nanocrystalline Ti, and the catalytic growth of Si nanowires (NW).

2. Current state of art of LLNL DTEM

The DTEM is built on the JEOL 2000FX microscope platform, see Fig. 1. The electron-optical column has been modified to provide laser access to the photocathode and specimen. A brass drift section has been added between the gun alignment coils and condenser optic that contains a 1” laser port and 45° Mo mirror, which directs an on-axis 211 nm laser pulse to 825 μm Ta disk photocathode.1 The 10 ns UV laser pulse photoexcites a ~15 ns FWHM electron pulse from the cathode. This pulse is accelerated through the electron gun and passes through a hole in the Mo2 laser mirror into electron optics of the TEM column. The electron pulse is aligned and illuminates specimens as in standard TEM operation, and thus all imaging modes can be utilized, e.g., bright field, dark field, selected area electron diffraction.

To better couple the photoemitted electron pulse into the condenser electron optics, a weak lens has been installed above the Mo laser mirror and drift section. The lens provides increased current by focusing the spatially broad pulsed electron beam through the hole in the laser mirror. In prior configurations without the coupling lens, it was found that the mirror was the limiting aperture and reduced the electron current by a factor of 20. The coupling lens combined with appropriate condenser lens settings and imaging conditions preserves the brightness of the photoelectron gun and improves beam quality by reducing the aberrations that can result from a spatially broad electron pulse and high angle, off axis electrons. More details on the coupling lens design will be given in the following sections.

Time-resolved experiments in the DTEM are conducted by first initiating a transient state in the sample and then taking a snapshot of the transient process with the 15 ns electron pulse at some specified time delay after the initiation pulse. In most DTEM experiments, the transient process is initiated with a second laser pulse, which enters the TEM column through a modified, high-angle X-ray port. For nanosecond time scale experiments, neodymium-doped YAG lasers with pulse duration from 3 to 25 ns are used that can produce fluences up to 1500 J cm⁻² on the specimen. The type of reaction produced in the sample is dependent on the laser-material interactions which in turn are function of the amount of absorbed laser light that depends on the laser wavelength, i.e., specimen absorption characteristics can vary with wavelength. For example, metals have broadband

Fig. 1. General schematic of the LLNL. Notice that a section with a window and mirror has been inserted between the gun and condenser sections of the microscope to direct light from the cathode laser to the cathode.

1 The Ta disk photocathode can also be used as a thermionic source in nominal TEM operational mode.

2 Solid molybdenum mirrors have a high reflectivity (> 60%) in the UV range, and molybdenum can be easily polished to produce high quality, uniform surfaces (low-wavefront distortion) needed for laser applications.
absorption and thus can absorb some amount of light at all wavelengths, while certain semiconductors only absorb sufficient amounts of laser energy in the UV range. In order to produce the desired experimental conditions in a variety of specimens, the fundamental wavelength (1064 nm) of these lasers can be frequency converted using non-linear harmonic generation crystals, e.g., doubled (532 nm) or tripled (355 nm).

In a typical DTEM experiment, the instrument and specimen are first aligned in standard, thermionic mode, and then the alignment is optimized further in pulsed mode. Since DTEM pump-probe experiments usually permanently alter the sample, the sample is moved to a new location between shots. The evolution of an irreversible materials process is studied through a series of pump-probe experiments with different time delays. Since the delays used in the DTEM can be microseconds, it is impractical to delay the pulses using an optical delay leg. Instead, time delays are set in the DTEM by electronic triggering and through the synchronization the two laser systems using active diagnostics in the beamline, e.g., photodiodes placed at equivalent distances as the photocathode and specimen, to precisely define the pulse arrival times. Using this method, the pump and probe pulses can be precisely timed within ~1 ns (which is the effective timing jitter of the flash lamp pumped, Q-switched laser systems).

2.1. Current performance of the DTEM

In its current configuration, the DTEM can acquire images with better than 10 nm spatial resolution with 15 ns electron pulses. An example of the current spatial resolution and image capabilities is given in Fig. 2, which shows a cross-sectional view of gold (dark layers) and carbon (light contrast layers) multilayer foil. The individual layer thicknesses are < 10 nm, and the layers are clearly resolved in the single-shot image (Fig. 2a). To better illustrate the resolution limits in the single-shot image, the pixel intensity across the multilayer was measured and plotted (Fig. 2b). The intensity from 9 nm-thick layers is clearly visible above the background, indicating that the resolution is at least 9 nm, if not better.

A critical advancement of LLNL DTEM over prior instruments developed by the Bostanjoglo group [12] is the ability to capture dynamical contrast images. The unique electron source and lens system of the LLNL DTEM allows higher electron beam current and coherence, enabling the use of objective apertures to obtain bright field and dark field images of defects such as grain boundaries, dislocations and stacking faults. Fig. 3b shows an example of a single-shot, 15 ns exposure 6061 Al sample containing fine precipitates; the dynamical contrast from bend contours is clearly evident. There was very little difference between the CW...
(Fig. 3a) and pulsed image (Fig. 3b) at low magnification with exceptions that the bend contours are slightly wider. The ability to capture dynamical contrast images is an important step in the DTEM’s technological development, since these defects play an important role in the mechanical properties of materials, and capturing their dynamics under a transient thermal or mechanical load can provide a better understanding of how the mechanical behavior of the material evolves.

3. Re-designing electron optics for single-shot DTEM

The standard electron optics of modern TEMs are designed to operate with electron beam currents \(< 100 \text{nA}\). In standard TEM, the electrons generated at the source (several \(\mu\text{A}\) of current for a thermionic source) are blocked by apertures to increase beam coherence and spatial resolution, and often much \(< 1\%\) of the generated electrons reach the sample (Fig. 4a). This is a practical tradeoff in conventional TEM, since there is sufficient dose in a 1 s exposure to acquire high-quality images using a nanoampere electron beam. However, single-shot operation in the DTEM does not have this luxury. The number of electrons per pulse \((10^8 – 10^9)\) and signal are low, requiring the use of large apertures and to make a tradeoff between beam coherence and signal. This compromise is necessitated by the limited source brightness, where the required current density at the sample is strictly dictated by temporal resolution and signal-to-noise ratio requirements (Rose criterion) [13]. The inevitable conclusion is that some sacrifice of spatial coherence is required, which means that the DTEM’s condenser system has to be able to handle much wider (or, more precisely, higher-emittance) beams than does a CW TEM. In effect, high-coherence modes such as phase-contrast atomic resolution imaging will be extremely challenging on the nanosecond scale, but other modes with less stringent coherence requirements (e.g., mass-thickness and diffraction contrast imaging) are possible, as shown in Section 3 and the following sections. While some gains can be made by removing fixed apertures and weakening the C1 lens (Fig. 4b), this can still leave well over 90% of the electrons unused, especially when C1 aberrations are considered. This is far from optimal, since the estimated spatial resolution limit due to spatial incoherence \((\sim 1 \text{ nm})\) is still far better than the resolution limit due to signal-to-noise ratio \((> 10 \text{ nm})\).

To solve this problem, a very weak, very large-bore lens (dubbed the C0 lens, since it precedes C1) is being introduced below the accelerator, followed by a long \((\sim 20 \text{ cm})\) drift space to allow the beam to reconverge (Fig. 4c). The geometry allows a 3 mm-diameter portion of the beam to be focused through the 1 mm-diameter hole in the mirror and into the center of the C1 lens without introducing excessive aberrations. Simulations of the modified condenser lens system show that the thermal emittance (e.g., the spatial incoherence deriving from the finite source brightness) dominates the effects of condenser lens aberrations when the DTEM is operated in this mode. In other words, the coupling is essentially as good as it can get; even with the large apertures in use, the aberration-induced emittance growth from source to sample is negligible. These simulations coupled with the measured characteristics of the beam at the exit of the accelerator predict that more than \(10^9\) electrons should be available in a 15 ns pulse at the specimen. This is a 20-fold improvement in beam current compared to the DTEM without the C0 lens. At this point the system will be limited by the source rather than by the lens and aperture designs, and the signal levels and coherence can be optimized against each other across the entire gamut of foreseeable experiments.

4. Near-term instrument developments

4.1. Arbitrary waveform generation laser system

For most high-powered, Q-switched, pulsed laser systems, the pulse duration cannot be varied over wide time ranges, i.e., the pulse duration cannot be easily changed from few nanoseconds to microseconds, and repetition rates typically do not exceed 100 kHz. Since the cathode laser pulse and electron pulse duration are similar, the time resolution is fixed by the type of cathode laser system used and the timing jitter between the pump laser

![Fig. 4. Schematic beam paths in the gun, accelerator, and condenser lenses for (a) conventional CW TEM, (b) the DTEM as described in the present report, and (c) the near-future DTEM with the added C0 lens. While the conventional design is an excellent optimization for few-second exposure times, many DTEM experiments call for a broader ability to sacrifice spatial coherence for increased signal without introducing excessive aberrations. The weak C0 lens solves this problem.](image-url)
and electron pulse (which in current configuration is \(\sim 1\) ns). Not all experiments require nanosecond time resolution, and thus, a compromise can be made between the temporal and spatial resolutions.\(^2\) For instance, microsecond time resolution is sufficient for some catalytic reactions and dislocation dynamic studies, and these studies can benefit from the added electron dose and increased spatial resolution. To increase flexibility in laser systems and to tailor the laser parameter for a given experiments, we are designing and constructing an arbitrary waveform generation (AWG) laser which can temporally shape laser pulse easily and change the pulse duration from a few nanoseconds to several microseconds.

The AWG is composed of a waveform generator that drives a fiber-based electro-optical modulator and temporally shapes a continuous wave fiber laser seed pulse. The modulated waveforms are then amplified, frequency converted and delivered to the DTEM at appropriate energy for the use of cathode and specimen drives. The AWG cathode drive laser allows for continuously variable and controlled electron pulse duration from 20\(\mu\)s down to 10 ns. The AWG sample drive laser will enable precise control of pulse time and shape so that we can achieve better control of the drive conditions at the specimen, e.g., heating rate, isothermal holds, and cooling rate and thus providing a wide variety of temperature–time profiles at the sample. At present, the sample is rapidly heated with a pulse of \(\sim 10\) ns duration (a number which we have very little ability to change), and then it cools according to its own thermal conductivity, usually on a time scale of 10–100\(\mu\)s. By compensating the thermal conduction heat loss from the sample region of interest with an appropriately shaped pulse, we will be able to sustain the sample temperature at a constant level for some microsecond before allowing it to cool. This will enable a broad class of experiments in catalysis and surface science. The AWG capability also enables the production of electron pulse trains, an essential element for developing multi-frame movies (discussed in next section). Multiple pulses with user set time delays between the pulses are also used for double exposure images to measure precise displacement of features during dynamic events.

4.2. Acquiring high-time resolution movies

The planned movie mode upgrade will enable multiple images or diffraction patterns to be acquired from a single sample drive event, thus producing a time history of a unique event. This capability will enable the study of phenomena that never unfold the same way twice, prime examples being defect motion in materials and irreversible nucleation and growth processes such as martensitic phase transformations. We plan to follow the approach developed at TU Berlin by Bostanjoglo [12], but with greater flexibility afforded by modern electronic and electron-optical technology.

The cathode laser AWG will be programmed to produce a series of electron pulses, each of which will capture a complete image or diffraction pattern. A fast multipole electrostatic deflector placed after the sample will deflect each image or diffraction pattern to its own region on the camera. The camera will be read out at the end of the experiment and digitally segmented into a time-series of up to 16 images. The interframe times will be in the order of \(\sim 100\) ns or better, depending on the slew rate of the high-voltage electronics. Future versions of movie mode may also include fast-framing CCD technology, which can capture 100 s of frames within a few microsecond. The main operating principle of these devices is that the photoelectron CCD data from multiple frames is stored in on-chip buffers that are readout at the end of the acquisition. Although these cameras are quite useful for optical measurements, the technology still needs development for use on electron microscopes, e.g., high-speed scintillators must be adapted to this technology and provide for detection of single 200\(\text{keV}\) electrons (i.e., single-electron sensitivity).

5. Experimental investigations on DTEM

5.1. Observing transient phenomena in reactive multilayer foils

The high-time resolution capabilities of the DTEM have been used to study the transient phases and morphological changes associated with rapid solid state chemical reactions occurring in reactive multilayer foils (RMLF) [11,14]. RMLFs, also called nanostructured metastable intermolecular composites, are layers of polycrystalline reactant materials that go through exothermic, self-propagating reactions when layer mixing is driven by an external stimulus [15–17]. Depending on composition, the number of bilayers and layer thicknesses, the exothermic reaction front can reach temperatures well above 1100\(\text{K}\) and travel at a velocity of \(\sim 10\) \(\text{m/s}\) governed by interface diffusion [18–20]. Since RMLFs produce immense heat over a small surface area, they are used in applications as localized heat sources for material bonding or biological sterilization [15–17]. In addition, the periodic nanoconstruction makes RMLFs relevant for examination of \textit{in situ} progression of interface-controlled diffusion and transient phase evolution.

Conventional methods lack the necessary combined spatial and time resolution to observe nanolayer mixing directly, leaving details of the reaction unclear. Using the time resolution in the DTEM, the transient states have now been observed \textit{in situ}. Plan-view RMLFs are irreversibly reacted inside the DTEM by an infrared sample drive laser, then the transient states of the reaction front are observed with time-resolved diffraction and imaging. By studying the transient states of this dynamic material to understand the mechanisms that govern the rate of heat generation and transport, we can understand more about atomic diffusion between thin films and phase boundary motion for optimized engineering applications.

For these studies, we chose the Al/Ni-7\(\text{wt}\%\) multilayer system. The phase evolution and metastable phase formation were studied using 15\(\text{ns}\) exposure, single-shot electron diffraction and brightfield imaging. The 15\(\text{ns}\) “snap shot” diffraction data showing the phase evolution from discrete Al and Ni\textit{V} multilayers to the final intermetallic phase is illustrated in Fig. 5. The single-shot diffraction has been acquired in front of \(t = 0\), in line with \(t = 300\) \(\text{ns}\), and beyond \(t = \infty\) the reaction front region to detect the evolution of phase formation and metastable states. Thermal effects of the exothermic behavior in the material are evident by the diffuse background and reduction in higher order reflections in the time resolved 300\(\text{ns}\) diffraction pattern (Fig. 5). When this hot NiAl structure cools to room temperature, concomitant grain growth processes preferentially texture the films, as indicted by the change in relative peak intensities. The primary conclusion in this study is that ordered B2 intermetallic NiAl phase forms within an extraordinarily short time period, \(< 300\) \(\text{ns}\), which can be expected due to short (few nm) atomic diffusion distances, high temperatures and high phase stability of the B2 structure at near equi-atomic compositions.

The reaction front appears as a sharp ring that radiates outward from the central laser initiation point, as shown in

\(^2\) Longer pulses have reduced space charge effects and, thus, have higher electron dose that enable the acquisition of images with higher spatial resolution, e.g., with 1\(\mu\)s electron pulse, image with sub-nanometer resolution can be acquired.

The sharp transition between the unreacted and reacted material is consistent with the electron diffraction, indicating that the reactants form rapidly in the order of the 15 ns electron pulse. Closer examination of the microstructure (Fig. 6b) revealed that the cellular structure forms directly behind the reaction front.

Simple calculations of the heat released by the mixing of Al and Ni indicate that temperature rises on the order of 1700 K can be expected ($\Delta H \approx 77$ kJ mol$^{-1}$ and $C_p^{\text{Ni/Al}} = 24$ J mol$^{-1}$ K$^{-1}$) [21]. At those temperatures and 60 at% Ni, the material expected to be in a two phase state, solid-NiAl+liquid-NiAl. This may explain the dark
contrast line, which may be related to the liquid structure, and a well-defined periodicity (∼750 nm) that is analogous to cellular liquid–solid structures in alloy solidification [22]. These cellular microstructures only persist for 2–3 μs after the reaction front passes and are not typically present in the post-mortem microstructure, and although the mechanism for their formation is still not clear, their appearance gives reasonable estimates of the local temperatures reached at the reaction front, which is relevant, new data for modeling these systems.

5.2. Rapid first-order phase transformations

The studies on martensitic phase transformation dynamics are well-suited for the capabilities of the DTEM. These transformations are defined as a solid–solid structural transformation that is diffusionless and occurs by a nucleation and growth process. These types of transformation are lattice distortive and shear dominant, where the kinetics and final martensite microstructure are defined by the local strain energy. Since the transformation is diffusionless, atoms move in a coordinated manner to accomplish the structural transition where growth velocities can approach the 1/2 speed of sound [23]. Due to the innate speed of these interfaces, experimental observation of the interface structure and even the overall transformations kinetics has been difficult. Hence, the high time resolution of the DTEM can be used to bring new insight into the interface dynamics and nucleation mechanisms in martensitic phase transformations.

For the first experiments, the high-temperature phase transformation in Ti was studied. Titanium is a dimorphic element which undergoes a crystal structure change from HCP (α-phase) to the BCC (β-phase) atomic coordination upon heating above 1155 K, which is accomplished by a simple shear strain of the HCP unit cell [24]. The fast kinetics of α- to β-phase transformation in nanocrystalline Ti films were investigated using single-shot electron diffraction and brightfield TEM images [25–28]. The selected area electron diffraction patterns (SAEDP) were taken at different delays between the heating, drive laser pulse and the electron pulse and with different drive laser energies. The laser-induced temperature change was determined by correlating the observed onset of melting in the SAEDP with laser energy, which was then used as a one-point temperature calibration for subsequent experiments. The SAEDPs were rotationally averaged to increase the signal-to-noise ratio, and the variation in radial intensity distribution as a function of scattering vector was plotted and compared to modeled intensities and distributions for the α- and β-phase, as shown in Fig. 7.

Using Rietveld fitting routines [29], the phase fractions and corresponding α to β transformation rates were determined for temperatures between transition start (1155 K) and melt temperature (1943 K). The experimental data were summarized in a time–temperature–transformation (TTT) curve with nanosecond time resolution (Fig. 8). Theoretical TTT curves were calculated using analytical models for isothermal martensite, available thermodynamic data, and experimental data gathered from pulsed electron brightfield TEM images. Above 1300 K, there is an excellent agreement between experiment and the discrete–obstacle interaction model [30], suggesting that the nucleation rate and thermally assisted motion of the martensite interface are controlled by interface-solute atom interactions. However, theory predicts much slower transformation rates near the transition temperature than experiment. Experimental data fits using the Pati–Cohen model [31,32] suggests that an increase in autocatalytic nucleation may partially account for the fast transformation.

Fig. 7. Fifteen nanosecond exposure, single-shot electron diffraction data of the α to β transformation in nanocrystalline Ti occurring by laser-induced temperatures of 1300 K. Upper-right diffraction patterns show the transformation occurring from α- to β-phase at 1300 K and time delay of 1.5 μs, which after cooling back through the transition temperature transforms back to α-phase (t = ∞). Comparison of the rotationally averaged radial intensity distributions (plot on left-hand side) with simulated diffraction data (plot on lower right-hand side) indicate that transform to the β-phase was complete at 1.5 μs.
rates at lower temperatures. It is also speculated that the transition temperature may be lower for the nanocrystalline material and may also explain the discrepancy.

Another important finding of this study was that incubation times for nucleation are strongly dependent on grain size, e.g., Ti foils with an average grain size that varies from 40 to 75 nm have incubation times of ~100 ns, while materials with 100 µm grain sizes have incubation times on the order of 500 ns. This suggests that numerous grain boundaries in nanocrystalline materials act as strong defects and heterogeneous sites for nucleation, reducing the nucleation barrier energy and increasing transformation rate. A second observable difference between the nanocrystalline and coarse-grained Ti was in the repeatability of the transformation. After one laser shot, the microstructure of the nanocrystalline material changed dramatically, and after repeated shots to the same region, the film ceased to transform to the β-phase, indicating that the film may have adsorbed some oxygen, which is an α-phase stabilizer [23]. In coarse-grained materials, only one BCC variant was formed during the laser heating, and the microstructure reverted to the initial HCP crystal orientation and grain sizes upon cooling. The transformation characteristics were repeatable with continued shots to the same region with no observable change in incubation times or transformation rates. It is not completely understood why only one crystallographic variant (six variants are possible) forms and why the transformation is completely crystallographically reversible. To clarify these issues, future experiments will use time-resolved bright-field imaging to study the grain size dependence on nucleation processes (e.g., observe nucleation sites and autocatalytic processes) and martensite/parent interface dynamics.

5.3. Laser-assisted NW growth

One aspect of nucleation and growth that is being studied in detail is the DTEM relates to NW growth. In order to successfully produce nanoscale materials for applications such as optoelectronic devices and sensors [33–41], it is vital to have controlled fabrication of the one-dimensional (1D) nanostructures. Limitations of current characterization techniques for the nucleation and growth mechanisms for 1D nanocrystalline materials do not allow for the understanding of and, thus, the ability to control the evolution of texture, morphology and crystal defects during processing.

The vapor–liquid–solid (VLS) process first described by Wagner and co-workers [42] is a widely accepted description for 1D nanostructure, or NW formation. The VLS describes growth as a two-step process: (1) the first step involves the formation of liquid metal (catalyst) droplets that act as absorption sites for gas-phase reactants; (2) the supersaturated cluster then grows anisotropically into a NW with continued deposited of reactant vapor. This method has been proven to successfully produce crystalline NWs, however size control is limited to the catalyst metal droplet diameter [40]. Other approaches to NW growth are laser-based methods, such as hybrid-pulsed laser ablation/chemical vapor deposition (PLA/CVD) [40] and laser-assisted NW growth at elevated temperatures [33,34,36,38,39], require the use of a pulsed laser to ablate a pellet target held at an elevated temperature in the presence of a reactive gas. Though proven to produce NWs, the number of variables involved in this experimental method yields a myriad of different morphologies [34,39].

In light of the need for control during VLS growth of NWs, in situ TEM-based growth methods have been used to study nucleation and growth mechanisms [35,37]. Studies of Si NW growth in the presence of oxygen have shown that the interface between liquid metal catalyst droplet and wire ‘body’ is a defining factor in controlled growth of NWs. These experiments were limited, however, by the 30Hz frame rate of video acquisition using conventional in situ TEM. Using the high time resolution and in situ capabilities of the DTEM, we can treat an electron transparent target using a pulsed drive laser and monitor the stages of NW growth using nanosecond-pulsed electron probe.

Films of (111) Si with a 4 nm Au layer (as a catalyst) and Si/SiO2 were treated with a frequency tripled (355 nm) Nd:YAG laser with a 8 ns pulse duration inside the DTEM. No additional heat or gas was introduced in the TEM chamber, and thus, NW growth was controlled by a single variable: laser intensity. By controlling the laser energy, we can melt or ablate samples to raw materials needed to produce NWs. Fig. 9a and b shows images collected during the development of Au-catalyzed Si wires by multiple pump laser shots and combined laser melting and ablation of a 4 nm Au-coated Si substrate. Multiple NWs that protrude from the Si substrate were produced by ablation of a Si–SiO2 sample with a single drive laser pulse, as shown in Fig. 9c. The wires resembled those produced during laser-assisted growth experiments by Morales and Lieber [36], yet NW production did not require gas flow or a steady-state temperature increase, unlike their experimental apparatus. In both cases, the NWs were produced by changing laser energy to ablate or melt the substrate. Thus, the DTEM allows for controlled, in situ, synthesis and characterization of NWs at nanosecond time scales. A complete understanding of the origin of texture, morphology and extended defects in NWs during nucleation and growth will allow for a more comprehensive model of the mechanisms involved in 1D nanostructure fabrication.

6. Conclusions

The high time resolution of in situ observations afforded by the unique capabilities of DTEM has brought new and fundamental insights into the phases and morphological evolution occurring in rapid chemical reactions of NiAl RMLFs, the nucleation behavior of α to β martensitic transformation in nanocrystalline Ti, and laser-assisted catalyzed growth of Si NW. Planned and ongoing improvements to the electron optics and laser systems will
continue to expand the instrument’s capabilities, which at present include the unique ability to capture single-shot images with 15 ns and 10 nm spatial-temporal resolution. The DTEM enables a new class of experiments that has orders of magnitude higher time resolution than standard techniques, and as the technology progresses, we expect many more exciting developments in the field.

Acknowledgments

We acknowledge the fantastic technical assistance of Richard Shuttlesworth and Benjamin Pyke and the support William Dehope. Work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Livermore National Laboratory and supported by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the US Department of Energy under Contract no. DE-AC52-07NA27344.

References